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ABSTRACT
In online shopping, users usually express their intent through
search queries. However, these queries are often ambiguous.
For example, it is more likely (and easier) for users to write
a query like “high-end bike” than “21 speed carbon frames
jamis or giant road bike”. It is challenging to interpret these
ambiguous queries and thus search result accuracy suffers.
A user oftentimes needs to go through the frustrating pro-
cess of refining search queries or self-teaching from possibly
unstructured information. However, shopping is indeed a
structured domain, that is composed of category hierarchy,
brands, product lines, features, etc. It would be much bet-
ter if a shopping site could understand users’ intent through
this structure, present organized information, and then find
the items with the right categories, brands or features.

In this paper we study the problem of inferring the la-
tent intent from unstructured queries and mapping them to
structured attributes. We present a novel framework that
jointly learns this knowledge from user consumption behav-
iors and product metadata. We present a hybrid Long Short-
term Memory (LSTM) [10] joint model that is accurate and
robust, even though user queries are noisy and product cat-
alog is rapidly growing. Our study is conducted on a large-
scale dataset from Google Shopping, that is composed of
millions of items and user queries along with their click re-
sponses. Extensive qualitative and quantitative evaluation
shows that the proposed model is more accurate, concise,
and robust than multiple possible alternatives. In terms of
information retrieval (IR) performance, our model is able to
improve the quality of current Google Shopping production
system, which is a very strong baseline.

1. INTRODUCTION
Shopping is a highly structured domain where category

hierarchy, brands, merchants, product lines, styles, features,
etc. form a structure among items. It is through this struc-
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Figure 1: Given a search query, the goal is to understand
the intent implied and predict a set of associated attributes.
Attributes here can be brands, categories, features, etc.

ture that users learn, reason and make their purchase deci-
sions. For an online shopping site, it is paramount to un-
derstand a user’s intent through these structured attributes.
The reason is twofold. First, it allows us to present informa-
tion in a way that aligns with how users understand, reason,
and make decisions, and thus ease the shopping process. For
instance, given a search query“cheap sofa”, it is important to
tell the users what brands, features, or textures are cheaper,
instead of just finding sofas that have “cheap” in their titles
—this will greatly ease the process of research and decision
making. Knowledge Graph is used by many search engines
to present search results as structured information and the
same motivation also applies for online shopping. Secondly,
and most importantly, if we can identify relevant item at-
tributes for a given query, we can find more relevant results
and thus reduce user’s frustration by minimizing the number
of times he/she needs to refine the search queries.

On the other hand, user queries are highly unstructured.
First, they can ambiguous. For example, the meaning of
“birthday gift for daughter”, “camping equipments”, or “af-
fordable mattress” depends on context and differs from user
to user. In addition, a query usually does not form a com-
plete sentence, but just a list of key words in arbitrary or-
der. Queries also often contain typos, and can be expressed
in user-dependent ways. Modeling these unstructured and
noisy queries in a robust and accurate way is challenging.



In this paper we aim at predicting latent structured intents
from shopping queries. Figure 1 presents an overview of the
scenario considered. We assume that our shopping space
is composed of a predefined set of attributes, which can be
brands, merchants, features, categories, product lines, etc.
Given a query, the goal is to find the subset of attributes
that are most likely to represent the user intent. For exam-
ple, given query“high resolution tv”, some implied attributes
might be “Ultra HD 4k” (feature), “TV” (category), or “LG”
(brand). Thus we can alleviate the users from the need to
select check-boxes to specify intent.

Note that this task is different from named entity recogni-
tion (NER), where the referred entities are strictly mapped
from terms in text. In our task a user does not need to
mention an attribute in any way (or does not even need to
be aware of the attributes), and it is the goal of this task to
figure out what are the implied attributes.

The difficulty of this task does not stem just from the fact
that queries are an unstructured way of representing users’
intents. In addition, the model needs to generalize well to
unseen queries. Usually for online shopping, the space of
items is rapidly growing, and we need a system that is well-
behaved even for new items or new attributes. Although one
can perform frequent re-training to alleviate the problem,
for a large shopping site that has a huge number of items,
frequent re-training is costly. Furthermore, an online system
often has a stringent latency constraints for satisfactory user
experiences or hardware constraints (e.g. memory) given a
production system. It is thus of great importance to build
a fast and concise model.

1.1 Model overview
In this paper we propose a novel solution that is able

to accurately interpret user queries while satisfying all the
aforementioned requirements. A key idea of our model is
to jointly train a query network, that learns the query-to-
attributes mapping from past users’ interaction responses
to the presented results, with a product network, that learns
attribute correlations from product metadata. Joint train-
ing is achieved by using a shared layer of attribute embed-
dings. To model unstructured queries in the query network,
a highly flexible function class is needed. In this paper we
adopt Long Short-term Memory (LSTM) bidirectional re-
current neural networks (BRNNs) [22] and to achieve both
robustness and generalizability, we propose a hybrid word-
level, character-level approach, that effectively ensembles a
word-level model, which works well for head queries, and a
character-level model, that works well for tail queries. The
product network serves to learn the structure of attributes
from product meta data. Here we consider this problem in
an unsupervised setting where correlations are learned in-
stead of being given via human annotations as in knowledge-
graphs. Our solution is thus more general and scales better.

1.2 Contributions
Our contributions are as follows:

A new framework that predicts latent structured intents
from shopping queries. It offers an interpretable and
robust way to model user intents, and opens a new
avenue to improve search result quality by presenting
more accurate results.

Jointly trained hybrid RNN & autoencoder. A model
that learns from the two most important sources of in-

formation available in online shopping: user interac-
tions and product metadata. The proposed approach
does not require additional parameters in the final
model as compared to a non-joint model, yet it signif-
icantly improves the performance of the model. Fur-
ther, the proposed hybrid approach is accurate and
robust as it enjoys the advantages of both character-
level and word-level models.

Experiments. We show that our model outperforms all
baselines in terms of prediction accuracy. Further-
more, when plugged into an information retrieval (IR)
system, our model is able to improve the quality of
the search result of Google Shopping production sys-
tem, which is a very strong baseline employing state-of-
the-art IR techniques. Moreover, we demonstrate the
robustness and the ability of our model to generalize
to unseen new items and attributes.

2. ATTRIBUTES AND PROBLEM DEFINI-
TION

We assume a set of predefined attributes that describes
items the users are looking for. The attributes used in ex-
periments contain the following types of information.

1. Feature tags. These describe the features, proper-
ties, or types of products. For example, for mattresses
there are tags such as king size, queen size, or twin, and
for cameras there are tags such as waterproof, 42.4-
megapixel or 4k video support.

2. Age Groups Some products might target specific age
groups. Tags of these groups are used in experiments.

3. Categories. Products also belong to categories, e.g.
grocery, electronics, clothing, etc.

4. Brands, product lines and merchants are also in-
cluded as attributes in experiments.

These attributes are either supplied by the merchants or
extracted from product/item descriptions using information
extraction (IE) techniques that are orthogonal to this paper.

For each query, we define a set of implied (associated)
attributes to be the attributes contained in items clicked
by users who issued the query. To make the data privacy-
compliant, we only use head queries, i.e. queries which are
issued by more than a certain number of users. While this
makes our dataset skewed towards head queries, we will show
how our system can learn to generalize well to tail queries
that it has never seen in the training data. These query-
attribute-set pairs are then considered as ground-truth ex-
amples for our model.

Furthermore, we assume that each item/product is asso-
ciated with a set of attributes. Formally, given input query
q, the goal is to predict a set of associated multi-labels, in
our case attributes, aq = (aq1, . . . , aqN ) ∈ {0, 1}N , where
aqi denotes the existence indicator of attribute i. Similarly,

each product p has attributes ap = (ap1, . . . , apN ) ∈ {0, 1}N .
There are two sources of shopping queries in our experi-

ments. One is from Google Search page 1. Queries that are
identified by a proprietary system to have purchase intents
are included here as shopping queries. The other source is
Google Shopping site2, where all search queries are clearly
shopping related.

1www.google.com
2www.google.com/shopping

www.google.com
www.google.com/shopping


3. RELATED WORK
To the best of our knowledge, this is the first public results

on mapping shopping search queries to multi-labels that rep-
resent user intents. However, our problem formulation and
techniques are related to the following lines of research.

Entity retrieval.
Our work is related to entity retrieval [19, 30] or entity

disambiguation [31, 13]. These areas involve mapping terms
from free-text to entities. The major difference between
these works and this paper is that we do not assume that
any terms in our query refer to any specific entities. Instead,
we want to understand the latent intent of a query and find
the implied attributes. In other words, note that in query
“high-end bike”, none of the terms in this query refers to “21
speed” or “carbon frame” but they are the likely attributes
implied.

Multi-label classification.
Multi-label classification is a well-studied problem that

has been applied to a wide range of domains, such as texts
[18, 12], images [3, 28], or music [24]. However, one prac-
tical issue is that the accuracy and efficiency suffers when
the number of labels is huge. [2] proposes to use a subset
to approximate the original space to improve efficiency. [5]
and [1] utilize correlations between labels. We instead, pro-
pose to jointly train a metadata network that models the
correlations between labels.

Search engine.
Our work is also related to studies on web search engines

[4], or information retrieval (IR). To improve search result
quality, popular techniques include query expansion [25, 20,
29], especially, pseudo-relevance feedback has been shown
to be very effective in most cases [25]. However, note that
these works have been focused on ranking of a list of doc-
uments instead of a multi-label classification problem. Fur-
thermore, pseudo-relevance feedback focuses on extending
the current query with terms from the top retrieved results,
while in our approach, we seek to augment the query with
terms learnt form user consumption behavior. [21] classi-
fies queries into different search goals, such as “directional”,
“informational”, “resource seeking”, etc. However, their goal
is understanding different types of searching behaviors (why
they are searching) instead of the intent of each query (what
they are searching for).

Recurrent neural networks.
Recurrent neural networks (RNNs) are a class of dynamic

models that have demonstrated impressive results in text
modeling. For example, RNNs have achieved state-of-the-
art results in text generation [9], machine translation [23],
and image captioning [11]. One popular use of RNNs is to
summarize information in texts, e.g. [27]. In this paper we
apply RNNs in similar fashions.

We also explore the idea of combining word-level and
character-level RNNs. [16, 26, 17] consider similar ideas
in named entity recognition (NER) and sequence tagging.
However, their approaches are based on using character-level
embeddings to augment word-embeddings. In this paper we
consider a much simpler and efficient alternative that trains
both the character-level and word-level RNNs on full queries.

Autoencoder.
Autoencoder is an unsupervised learning approach that

finds low-dimensional representation of data automatically.
For example, [7] uses autoencoded deep-learning represen-
tation for speech compression and recognition, and [15] uses
autoencoders for image retrieval. The product attribute net-
work in our model is one form of autoencoder. However, our
goal is to jointly train a better attribute embedding, instead
of obtaining the representation as in traditional settings.

4. PROPOSED MODELS
In this section, we present a detailed description of a series

of proposed models. Following the problem formulation in
Section 2, the goal of these models is to learn a function that
maps a query to a the set of attributes relevant to the intent
of the user who issued this query. Our models vary in terms
of how they represent queries in order generalize to unseen
words/queries.

4.1 Multi-layer perceptron (MLP)
Probably one of the simplest models for our purpose is a

multi-layer perception (MLP) that takes query word counts
as input and predicts attributes. Formally, in a L-layer
multi-label classification MLP, we have hidden factors

h(i) = σ(i)(W (i)h(i−1) + b(i)), i = 1, . . . L, (1)

where h(0) is the input, σ(i) denotes non-linear activation
function at layer i, and σ(L) is the sigmoid output pre-
dictions. W (i) and b(i) denote the weight and bias term
respectively. Figure 2a illustrates a MLP model in which
we see that the hidden layer h represents the query em-
bedding, which is then fed via a fully-connected layer to
predict a set of binary attribute indicators. The system is
trained in a standard way to minimize the logistic loss of the
query-attributes training data. However, in a standard im-
plementation where input queries are encoded as word count
vectors, word order information is lost (“milk chocolate” is
indistinguishable from “chocolate milk”). This is thus not an
ideal option for shopping query understanding.

4.2 LSTM-based networks: Char-BRNN and
Word-BRNN

Another way to summarize the semantics of a query in
a low-dimensional vector is through recurrent neural net-
works (RNNs). Given an input sequence x1, . . . , xT , a RNN
performs

hi = f(hi−1, xi), i = 1, . . . , T

for some function f , where hi denotes the hidden state of
the sequence after observing xi. That is, it is a network that
learns how to update the state given input at each time step.
For query understanding, we can train a RNN that encodes
the information of a query in hT , which is then followed by
a classifier for attribute prediction. In this paper we adopt
Long Short-term Memory (LSTM) [10] RNNs, as it is able
to encode long-range context, address the vanishing gradi-
ent problem, and is slightly more general than alternatives
such as Gated Recurrent Units (GRUs) [6]. An LSTM state
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Figure 2: (a) (b) (c): Three possible choices of query networks. (d): Character-level and word-level bidirectional recurrent
neural networks (BRNN).

update is composed of the following operations

[ft, it, ot] = σ (W [ht−1, xt] + b) (2)

lt = tanh (V [ht−1, xt] + d) (3)

ct = ftct−1 + itlt (4)

ht = ottanh (ct) , (5)

where ct denotes the cell state, and ft, it, ot are the forget
gate, input gate, and output gate respectively. These gates
control how information is added to or removed from cell
states along the sequence of state updates. For simplicity,
we denote this set of operations by ht = LSTM(ht−1, xt).

A simple generalization of RNN is to construct a bidirec-
tional RNN (BRNN) that summarizes information of a
sequence from both directions [22]. Formally, we construct

−→
ht = LSTM(

−−→
ht−1, xt) and

←−
ht = LSTM(

←−−
ht+1, xt). (6)

With this BRNN, we can define a character-level or a
word-level BRNN-based attribute prediction model, with
the final layer defined as

âq = σ
(
Wdec · φ(Wfusion

[−→
h T ,
←−
h 0

]
)
)

(7)

The bias term for each affine transformation and hs’ depen-
dency on query q are skipped for clarity. The first affine
transformation, given by Wfusion, serves as a fusion layer
that fuses the two directions of RNN states to realize the
query representation. σ denotes element-wise sigmoid func-
tion σ(x) = (1 + exp(−x))−1, φ is some non-linear function,
and âq is the final sigmoid prediction output given query q.
This model is illustrated in Figure 2b for the case of char-
BRNN (word-BRNN follows in a similar fashion). We
note here that char-BRNN and word-BRNN are technically
identical, with the difference being that in char-BRNN the
model operates on the sequence of characters in the queries
(thus can generalizes to unseen words) while in word-BRNN
the model operates on the sequence of words in the query
thus can better model head words.

To optimize either network, we minimize logistic loss,

Lquery :=
∑
q∈Q

∑
i∈[1,N ]

aqi log(âqi) + (1− aqi) log(1− âqi),

(8)

where Q denotes the set of training queries.

4.3 Hybrid network
Char-BRNN and word-BRNN are both powerful models

yet each of them has its own drawback. In word-BRNN the
model that takes a sequence of words as input and statistical
strength is not shared between words. This is not ideal since
for an online shopping site, new model names will appear in
queries, and those names usually have some patterns (e.g.
i5-6200u and i7-6500u are CPUs of the same brand, and
D3200 and D3300 are cameras in the same product line).
It is desirable to build a model that learns the underlying
patterns. One way to alleviate this issue is using prefixes or
suffixes as features, or perform stemming. However, these
approaches only address a few special cases instead of pro-
viding a general solution. In addition, in practice the num-
ber of possible words is huge (consider all possible typos in
queries). Modeling all of them is infeasible, so one might
end up discarding infrequent words.

On the other hand, char-BRNN can solve this general-
ization problem, by taking a sequence of characters as in-
puts. This greatly reduces the model size, as the number
of possible characters is much smaller than the number of
possible words. Words with similar forms or patterns share
similar character sequences, and the resulting hidden state
updates would thus also be similar. Character-level RNNs
have shown promising results in multiple domains [27, 9].
However, as a character-level model relaxes the natural word
boundaries, it suffers at rare words where we do not have
enough data to understand a specific arrangement of char-
acters.

It is thus tempting to design a model that enjoys the
strength of both word-level RNNs and character-level RNNs.
[16, 26, 17] propose to concatenate the word-level embed-
ding and the character-level embedding, which is extracted
from either another RNN or a convolutional neural network.
Note that in these approaches the character-level embedding
of one word does not depend on previous words. In fact, one
can deem these approaches as extracting features for each
word by character-level models.

In this paper we instead, consider jointly training a character-
level and a word-level RNN, both of which are constructed
on a full query. The output of the two are then concatenated
to form the query representation. We call this a“hybrid”net-
work, Hybrid-BRNN. This allows us to model cross-word
dependency among characters, and the implementation and



training is much simpler than those in [16, 26, 17]. In other
words, we can build a hybrid query network:

hhybrid :=
[−→
h char

T ,
←−
h char

0 ,
−→
h word

T ,
←−
h word

0

]
(9)

âq = σ
(
Wdec · φ(Wfusion · hhybrid)

)
, (10)

as shown in Figure 2c. As before, the query representation
hhybrid is fed via a fully-connected layer to predict attributes
aq and the model is trained end-to-end to minimize the lo-
gistic loss similar to Equation (8).

4.4 Joint Networks
In our query networks (MLP, char-BRNN, word-BRNN

and hybrid-BRNN) described in the previous subsections,
the correlation between attributes is ignored (not explicitly
modeled). As the number of attributes becomes huge, pre-
dictions can be inaccurate. To address this issue we propose
to jointly train an autoencoder on product metadata that
learns the correlation. The key insight is that co-occurrence
pattern of product attributes should be very similar to the
co-occurrence pattern of latent attributes implied by queries.
This enables us to use the information from millions of prod-
ucts available in the online shopping site (such as Google
Shopping) database to more accurately capture the attribute
semantics. We first begin by defining the product network
then explain the joint training strategy.

Product Network.
Given a product p annotated by a set of attributes ap =

(ap1, . . . , apN ) ∈ {0, 1}N . We train an autoencoder that
minimizes

âp := σ (Wdec · φ (Wenc ap)) (11)

Lproduct :=
∑
p∈P

∑
i∈[1,N ]

api log(âpi) + (1− api) log(1− âpi),

(12)

where Wenc ∈ RD×N ,Wdec ∈ RN×D, and D < N . P de-
notes the set of training products. Bias terms are omitted
for clarity. Right hand side of Figure 3 shows the architec-
ture of this network. Intuitively it learns an encoder that
encodes the input attributes into aD-dimensional space, and
a decoder that is able to recover the original input from this
lower dimensional vector. We call the rows in Wdec attribute
embeddings. If D is small, this formulation forces the em-
beddings of frequent co-occurring attributes to be similar.

Joint Training.
In order for the two networks (query and product net-

works) to communicate information, we make the two net-
works share parameters in the attribute embedding layer
Wdec. Figure 3 illustrates this idea. Here we show the
hybrid query network (hybrid-BRNN) as an example, but
other query networks (such as char-BRNN or word-BRNN)
can be jointly trained in the same manner. Training is per-
formed through minimizing the joint loss,

Ljoint := Lquery + λLproduct, (13)

where λ controls the trade-off between learning from product
structure and learning from user responses. Note that the
product model is not needed during serving. After all the
two models only share parameters, but do not mix inputs

Char 
BRNN

Word 
BRNN

aq = (aq1   aq2   aq3   aq4   aq5) ap = (ap1   ap2   ap3   ap4   ap5)

ap = (ap1   ap2   ap3   ap4   ap5)

Query

shared 

Figure 3: Full model. Parameters in the final fully-
connected layer (in blue) are shared.

and outputs. Thus the model size and inference efficiency
stays the same as the models without joint training. In Sec-
tion 5.1, we show that this joint training approach consis-
tently provides performance improvements across different
variants of the model.

5. EXPERIMENTS
Our experiments are performed on a proprietary dataset

collected at Google Shopping. The dataset is composed of
more than 150 million queries with associated attributes
selected as described in Section 2. We split the data into
80%, 10%, and 10% for training, validation, and testing sets
respectively. The three sets have no overlapping queries.
The queries contain more than 100,000 unigrams. In our
experiments, about 30,000 attributes are considered.

Our evaluation contains both intrinsic evaluation (attribute
prediction accuracy with ablation studies) and extrinsic eval-
uation based on information retrieval results.

Training details.
All models are trained by backpropagation. We use ADAM

[14] with learning rate 0.001 and a mini-batch size of 128.
Gradients are clipped to a maximum norm of 5.0. For RNNs,
we use LSTM with one hidden layer with 512 units. We ini-
tialize the neural networks with N (0, σ2

init) with σ2
init =

2
(fan in)+(fan out)

, following [8]. Hyperparameters, learning al-

gorithm parameters as well as embedding sizes for words ,
characters and final prediction layer are selected by cross-
validation over the validation set.

5.1 Intrinsic Evaluation
We first evaluate our model in terms of attribute predic-

tion accuracy. Evaluation metrics are standard precision,
recall, and F1 scores (2·precision · recall/(precision+recall)).

5.1.1 Prediction accuracy and size
We evaluate all three types of query models (character-

level, word-level, and hybrid), and compare them with the
baseline of MLP. The results are summarized in Table 1.
We see that all variants of RNN-based models outperform
MLP. The hybrid approach that combines character-level
and word-level models outperforms individual ones signifi-
cantly in F1 scores. We also observe a trade-off between size
and accuracy here: the hybrid model achieves the best per-
formance at the cost of a bigger model size. On the other
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Figure 4: For all variants of our model, the benefit gained from joint training is the greatest for rare attributes. Actual
attribute frequencies are hidden to protect proprietary data.
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Figure 5: (a) Even though the hybrid model is more flexible and powerful, it converges at a similar speed as other models.
(b) (c) (d): Speed of convergence stays similar even with joint-training.

Model Size Precision Recall F1

MLP 1.04 GB 0.694 0.359 0.473

Char-BRNN 254 MB 0.720 0.386 0.503

Word-BRNN 334 MB 0.731 0.408 0.524

Hybrid-BRNN 588 MB 0.737 0.431 0.544

Table 1: Prediction accuracy and size. All RNN-based mod-
els outperform MLP significantly. The hybrid approach out-
performs the character-level-only and the word-level-only
models.

hand, the character-level model, albeit much smaller, still
outperforms MLP by a large margin and provides competi-
tive performance.

5.1.2 Joint training

Char-BRNN Word-BRNN Hybrid-BRNN

Query only 0.503 0.524 0.544

Joint-training 0.524 0.537 0.561

Table 2: F1 scores of all variants. Joint training improves
F1 scores for all models.

Here we study the benefits provided by joint training. Ta-
ble 2 summarizes the results. We focus on RNN-based mod-
els (character-level, word-level, and hybrid BRNNs), as they
outperform MLP significantly. We see that joint-training
consistently boosts performance across all variants. We fur-
ther examine the prediction accuracy on attributes with dif-

ferent frequencies. Results are summarized in Figure 4. We
see that the benefit gained from joint training is the great-
est for rare attributes. This confirms our motivation of using
joint training to defeat inaccuracies at the tail when we have
a large number of attributes.

5.1.3 Training time
In Figure 5, we plot the learning curves of all the models.

Interestingly, we found that even though the hybrid model
is more flexible and powerful, it converges at a similar speed
as other models, as shown in Figure 5a. In Figure 5b, 5c,
and 5d, we compare the convergence of models with and
without joint training. We see that the convergence rate
stays similar even with joint-training for all models.

5.1.4 Qualitative analysis

“MDRZX390MC” “MDRZX709MK”

(real headphone model) (made-up headphone model)

Headphones brand: Sony Headphones brand: Sony

Brand: Sony Brand: Sony

Connectivity: Wired Headphones type: Headphones

Headphones type: Headphones Headphones use: Cell Phone

Table 3: Example queries (top row) and the predicted top
attributes (the following rows). The left query is a head-
phone model name and the right query is a made-up model
name that simulates a future unseen model. Our model is
able to generalize to unseen model names based on the char-
acter pattern of a word.



“yoga 3” “yoga 5” (made-up model) “yoga mat” “yoga mattt” (typo)

Brand: Lenovo Laptops: brand: Lenovo Yoga & Pilates Mats Yoga & Pilates Mats

Laptops: Touchscreen Brand: Lenovo Brand:Yoga Direct Gender: Unisex

Laptops brand: Lenovo Lenovo product line: IdeaPad Brand:Ggi Merchant: YogaOutlet.com

Table 4: Example queries (top row) and the predicted top attributes (the following rows). Our model is able to generalize to
different unseen words in differently reasonable ways.

“gift for girlfriend” “gift for 10-year-old girl”

Age group: adult Gender: female

Gender: female Gender: unisex

Brand: Alex And Ani Merchant: Fat Brain Toys

Bracelets: age group: adult Merchant: Target

Bracelets: material: silver Age group: adult

Bracelets: brand: Alex and Ani Merchant: Walmart

Bracelets: silhouette: bangle Brand: Rose Art

merchant: Alex and Ani Brand: Klutz

Bracelets: department: women Merchant: Jet.com

Gender: unisex Age group: children

Bracelets: gender: female Merchant: Toys R Us

Table 5: Our model is able to model complex abstract
queries. Top row shows queries (in quotes) and the following
gives the predicted top attributes.

We first study our model’s ability to generalize to unseen
queries. This is extremely important for online shopping,
as the space of items is rapidly growing. We want our sys-
tem to be robust even for unseen words. Table 3 shows an
example illustrating how the model generalizes. The query
on the left is a headphone model name, and the query on
the right is a made-up model name that simulates a future
unseen query. We see that even though the made-up name
is out-of-vocabulary, our model is still able to predict rea-
sonable headphone-related attributes based on the character
pattern. Similarly, Table 4 shows another example on a dif-
ferent set of queries. Again, we see that our model is robust
to typo and can generalize to different unseen queries in dif-
ferently reasonable ways.

Table 5 shows an example illustrating how our model han-
dles abstract complex queries. We see that even the left
query, “gift for girlfriend”, does not contain “bracelet” as
a keyword, our model predicts bracelets and some related
brands to be likely attributes. These are arguably reason-
able guesses without further information. Similarly, even
the right query, “gift for 10-year-old girl”, does not contain
“toy” as a keyword, our model reasonably retrieves some toy
brands and related merchants3.

5.2 Extrinsic evaluation on IR
In this section we present extrinsic evaluation results on

information retrieval (IR) performance. Specifically, we study
whether the predicted user-intent attributes are able to im-
prove the search result quality.

The dataset over which we evaluate our model consists
of about 200, 000 queries that are non-overlapping with
the training queries. Each query is associated with a list

3 Predicted “Age group: adult” attribute in the right column
could be due to the fact that some gifts for kids, such as
LEGO or soccer balls, are not kids-exclusive.

of search results, each of which has a human-annotated rat-
ing. The human ratings are in a 10-point scale from “very
irrelevant” to “very relevant”. In addition to human rating,
each query result has an IR score, which is generated from
the Google IR system. The system is a very strong baseline
that is used in production at Google. During retrieval, the
results for a query are ranked in descending order by the IR
score.

We use the predicted attributes to generate new rankings
by boosting the original IR scores based on the attributes
predicted. Specifically, for each query-result pair (q, d), we
boost the IR score sqd and obtain a new score s?qd := sqd ·(1+

α
|Aq∩Ad|
|Aq| ), where Aq is the set of top k attributes predicted

for q and Ad is the set of attributes of d respectively. α is
some positive constant that is selected by cross-validation
for this experiment. Incorporating confidence scores of the
predicted attributes (soft predictions) into boosting is left
as future work.

The boosted scores s?s will induce a re-ranking of re-
sults for each query. We measure the quality of a ranking
based on discounted cumulative gain (DCG) , which is calcu-
lated based on human-ratings: DCG@n := r1+

∑n
i=2

ri
log2(i)

,

where ri is the human rating of the result at rank i.

5.2.1 Overall results

Gains in DCG (%)

k @1 @3 @5 @10

MLP −0.221∗ 1.202 1.432 0.336

Char-BRNN 3.577 1.895 1.580 0.593

Word-BRNN 7.874 3.117 1.627 0.685

Hybrid-BRNN 11.027 4.592 1.823 0.914

Table 6: Gains in DCG over current production system.
All BRNN models here are jointly trained. The number of
attributes used (k) is selected by cross-validation for each
model. The number with a star is not statistically signifi-
cant.

The IR performance is compared with current Google pro-
duction system, which is a very strong baseline that incor-
porates many powerful techniques such as pseudo-relevance
feedback and query expansion [25, 20], to name a few.

Table 6 shows the improvements in terms of DCG given
by jointly-trained RNN-based models. We see that all RNN-
based models significantly improve DCGs. Especially, we
see a great improvement in DCG@1, which represents the
quality of the most important top position. Improvements
on later positions confirm the effectiveness of our approach:
after all, pseudo-relevance feedback is limited to extracting
attributes from only top few results, while our approach di-
rectly predicts the most relevant attributes among all. In ad-



before

after

before

after

(a) Query: “bmw motorcycle apparel”

before

after

after

(b) Query: “costs for iphone 5”

Figure 6: Examples of re-ranking of results (before and after). (a) Our model correctly predicts the category “Shirts and
Tops”, so our boosting promotes and shows a T-shirt instead of an adaptor at position 3. (b) Production incorrectly shows
an iPhone charger at position 2. However, after boosting we demote that result and instead show an iPhone 5S.

dition, our hybrid model consistently outperforms character-
level-only and word-level-only models.

5.2.2 Examples of re-ranking
Figure 6 presents 2 examples of how our attribute-prediction-

based boosting is able to correct some mistakes made by
current Google Shopping production system. In Figure 6a,
given query “bmw motorcycle apparel”, our model correctly
predicts the category“Shirts and Tops”, so our boosting pro-
motes and shows a T-shirt instead of an (incorrect) adaptor
at position 3. Similarly, as shown in Figure 6b, with query
“costs for iphone 5”, production incorrectly shows an iPhone
charger at position 2. However, after boosting we demote
that result and instead show an iPhone 5S.

5.2.3 Ablation studies

Gains in DCG (%)

k @1 @3 @5 @all

2 −11.492 2.036∗ 1.502∗ 0.621

3 −5.337 1.245∗ 1.661 0.709

4 1.626∗ 2.370∗ 1.714 0.809

5 6.334 2.245∗ 1.541 0.747

6 7.333 2.856∗ 1.397∗ 0.725

7 8.282 3.442 1.713 0.813

8 6.753 4.521 1.805 0.852

9 11.027 4.592 1.823 0.914

12 −1.710∗ 2.196∗ 1.876∗ 0.547∗

15 −15.560 0.243∗ 0.559∗ 0.175∗

20 −21.916 0.271∗ 0.556∗ 0.021∗

Table 7: Gains in DCG with different number of top at-
tributes used per query (k) for hybrid model. A k at around
9 gives best results for all models. Numbers with a star are
not statistically significant.

Gains in DCG (%)

k @1 @3 @5 @10

Hybrid 8.326 3.071 1.638 0.665

Joint hybrid 11.027 4.592 1.823 0.914

Table 8: Joint training brings greater gains in DCG.

Here we give ablation analysis of the IR performance. We
present detailed results only for the best-performing hybrid
model due to space constraints, but the same conclusion
holds for all variants. First of all, we examine the impact
of different numbers of predicted attributes used per query,
i.e. k. The results are summarized in Figure 7. We found
that for all models, a k at around 9 gives the best results
overall. We conjecture that for small ks we might “overfit”
by being very specific, and for very large ks some of the
predicted attributes become less accurate, so it would hurt
performance. We hypothesize that in future work where we
use soft predictions for score-boosting, the need to find an
optimal k can be eliminated. In addition, we found that
all jointly trained models outperform the ones without joint
training at all positions. Table 8 presents the results for
hybrid model with k = 9.

6. CONCLUSION
In this paper we study a new framework that predicts

latent structured intents from shopping queries. We propose
a jointly trained hybrid RNN-autoencoder that learns from
user responses and product metadata simultaneously. Our
model is more accurate and robust than all baselines, and
is able to generalize to unseen queries better. High-quality
human-ratings are used to evaluate IR performance. We
show that our model can significantly improve the quality
of current Google Shopping production system.
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